Review on Financial Forecasting using Neural Network and Data Mining Technique
نویسندگان
چکیده
The rise of economic globalization and evolution of information technology, financial data are being generated and accumulated at an extraordinary speed. As a result, there has been a critical need for automated approaches to effective and efficient utilization of massive amount of financial data to support companies and individuals in strategic planning and investment decisionmaking. The competitive advantages achieved by data mining include increased revenue, reduced cost, and much improved marketplace responsiveness and awareness. There has been a large body of research and practice focusing on exploring data mining techniques to solve financial problems. This paper describes data mining in the context of financial application from both technical and application perspective by comparing different data mining techniques.
منابع مشابه
Forecasting Job Burnout among University Faculty Members of Yazd Payame Noor University Using Artificial Neural Network Technique
Background: Faculty members are one of the main factors in the higher education system, that high level of occupational stress caused by educational, research, and executive duties makes them exposed to burnout. The purpose of this study is Forecasting burnout of faculty members of Yazd Payame Noor University using artificial neural network technique. Methods: The present research is descripti...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کامل